
Geog 657 Climate Dynamics Spring 2007

Spherical Harmonics and Spectral Model Solution
Notation

(x, y, z) eastward, northward, upward coordinates

(u, v, w) velocity vector components corresponding to (x, y, z)

(ϕ, λ) latitude, longitude

a radius of the earth

µ = sin ϕ sine of latitude used in spherical harmonics

Pn Legendre Polynomial

Pm
n Associated Legendre Function

Y m
n = Pm

n eimλ Spherical Harmonics

ξm
n renormalization factor for spherical harmonics

M zonal wavenumber of the harmonic series truncation

J truncation function for the meridional wavenumber

δnm Kronecker delta

(i, j,k) unit vector components corresponding to (x, y, z)

V = ui + vj two-dimensional velocity vector

D = ∇ ·V horizontal divergence

Ω angular speed of earth’s rotation

f = 2Ω sin ϕ Coriolis parameter

g sea-level gravity, used with height in geopotential meters

h height of the shallow water layer

Φ = gh geopotential energy of top of water layer

ζ vorticity in the horizontal plane

Ψ the stream function (horizontal part of vector potential)

χ the scalar potential

U, V modified velocity components

Note: V 6= |V|
ǫm
n factor used in derivatives of spherical harmonics

Zm
n , An, Bn, Cn, Dn, En temporary Fourier coefficients

There is still at least one unfound bug in this writeup, but the general flow of the math

leading to the spectral solution for a GCM is correct. There are some equations where the

references disagree with each other or with me. Conventions on when to include various

factors of a (earth radius) in the spherical harmonic formulations vary, as does the choice

of including the renormalization factor ξm
n within the associated Legendre function Pm

n (µ)

or separating it as done here.
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Legendre Functions and Spherical Harmonics

Earth is spherical, and the spherical coordinate system used in meteorology is (z, ϕ, λ)

where
z ≡ r − a altitude above sea level

ϕ latitude

λ longitude

This varies from the standard mathematical coordinate system (r, θ, ϕ).

In cartesian coordinates, the Laplacian would be

∇2T =
∂2T

∂x2
+

∂2T

∂y2
(1)

and we need to put that into the spherical coordinate system. The transform uses the

differential of arc length:

ds = i a cosϕdλ + j a dϕ (2)

∇ =
i

a cosϕ

∂

∂λ

j

a

∂

∂ϕ
(3)

∇2T =
1

a2 cos2 ϕ

∂2T

∂λ2
+

1

a2 cosϕ

∂

∂ϕ

(

cosϕ
∂T

∂ϕ

)

(4)

Insert a useful coordinate transformation that gets rid of most references to trigono-

metric functions.

µ ≡ sin ϕ (5)

dµ = cosϕdϕ (6)

dϕ =
dµ

cosϕ
=

dµ
√

1 − µ2
(7)

cosϕ =
√

1 − µ2 (8)

∇2T =
1

a2 cos2 ϕ

∂2T

∂λ2
+

1

a2 cosϕ

∂

∂ϕ

(

cosϕ
∂T

∂ϕ

)

=
1

a2(1 − µ2)

∂2T

∂λ2
+

√

1 − µ2

a2
√

1 − µ2

∂

∂µ

(

(1 − µ2)
∂T

∂µ

)

=
1

a2(1 − µ2)

∂2T

∂λ2
+

1

a2

∂

∂µ

(

(1 − µ2)
∂T

∂µ

)

(9)

Diffusion on a sphere.

∂T

∂t
= κ∇2T ==

κ

a2

[

1

1 − µ2

∂2T

∂λ2
+

∂

∂µ

(

(1 − µ2)
∂T

∂µ

)]

(10)

Assume a separation of variables

T (λ, µ, t) = P (µ)Q(λ)S(t) (11)

and plug these back into the diffusion PDE

PQ
dS

dt
=

κ

a2

[

PS

1 − µ2

d2Q

dλ2
+ QS

d

dµ

(

(1 − µ2)
dP

dµ

)]

(12)
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in which note that ∂ has changed into d because these are now all single-variable functions.

Multiply by a2(1 − µ2)/(κPQS):

a2(1 − µ2)

κ

1

S

dS

dt
=

1

Q

d2Q

dλ2
+

1 − µ2

P

d

dµ
(1 − µ2)

dP

dµ
(13)

Now the first term after the equals sign contains only terms in λ so it can be separated out

1

Q

d2Q

dλ2
= functions of only (µ, t) = const = −m2 (14)

where the separation constant, −m2, as usual makes it obvious that someone has been

reading ahead. This is the general harmonic equation, in which solutions will be constructed

from

Qm = eimλ = cosmλ + i sinmλ (15)

wherein i =
√
−1 puts us temporarily into complex numbers. (When these are used

in meteorology, Fourier coefficients will always have sufficient factors of i to assure that

the solutions are real.) The qualitatively understood result is that solutions in longitude

will consist of sums of periodic functions of various wavenumbers. The obvious fact that

Qm(λ) = Qm(λ + 2π) for all m and all λ means that m will always be integers.

We could also quickly separate out the equation for S(t) and obtain an exponential

damping term, but that is not needed for the spectral model solution, we need the spatial

eigenfunctions.

Having separated out and solved Q(λ), the remaining parts of the equation are separable

into
a2

κ

1

S

dS

dt
=

1

P

d

dµ
(1 − µ2)

dP

dµ
− m2

1 − µ2
(16)

in which the right side contains all variation in terms of µ. We invoke an apparently

miraculous separation constant:

1

P

d

dµ
(1 − µ2)

dP

dµ
− m2

1 − µ2
= −n(n + 1) (17)

This is called the Associated Legendre Differential Equation and it can be solved, but we

will only do a simplified version as an example.

First phase: set m = 0 and assume zonal symmetry (as in Budyko-Sellers type zonal

models) in which every point on a latitude circle has the same value, Q(λ) = const. The

equation simplifies into the Legendre Differential Equation

d

dµ
(1 − µ2)

dP

dµ
+ n(n + 1)P = 0 (18)

This can be solved by assuming a power-series solution.

P (µ) =

∞
∑

j=0

ajµ
j (19)

dP

dµ
=

∞
∑

j=1

aj j µj−1 =

∞
∑

j=0

aj+1(j + 1)µj (20)
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d2P

dµ2
=

∞
∑

j=2

aj j(j − 1)µj−2 =

∞
∑

j=0

aj+2(j + 1)(j + 2)µj (21)

µ2 dP

dµ
=

∞
∑

j=0

aj+1(j + 1)µj+2 (22)

d

dµ

(

µ2 dP

dµ

)

=

∞
∑

j=0

aj+1(j + 1)(j + 2)µj+1 =

∞
∑

j=0

aj j(j + 1)µj (23)

Plug these sums back into the Legendre equation

0 =
d

dµ
(1 − µ2)

dP

dµ
+ n(n + 1)P (24)

=

∞
∑

j=0

aj+2(j + 1)(j + 2)µj −
∞
∑

j=0

aj j(j + 1)µj + n(n + 1)

∞
∑

j=0

ajµ
j (25)

=

∞
∑

j=0

µj
[

aj+2(j + 1)(j + 2) − ajj(j + 1) + n(n + 1)aj

]

(26)

Since µ ∈ [−1, +1], the only way for this last equation to be true is if the element in the

square brackets vanishes for all j, which creates a recursion formula

aj+2 = aj
j(j + 1) − n(n + 1)

(j + 1)(j + 2)
(27)

Implication of the j + 2 recursion is that we will have a set of polynomials, each consisting

of either entirely even-power terms in µ or entirely odd-power terms in µ because the

coefficients jump by order two.

Convergence of the series P (µ) =
∑

∞

j=0 ajµ
j is furthermore a difficult requirement to

fulfil at the poles, µ = ±1. Particularly at the North Pole, µ = 1 so µj = 1 ∀j and we are

dealing with the sum P (1) =
∑

∞

j=0 aj. The recursion formula does not lead to a convergent

sequence of aj values just by examining j,

lim
j→∞

aj+2

aj
=

O(j2)

O(j2)
= 1 (28)

with one special exception: if n is assumed to be a positive integer, then the top of the

recursion vanishes for j = n, and the series terminates.
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We thus get two polynomial series, odd and even, each starting from a mathematically

arbitrary a0 or a1. For the even series.

P (µ) =
n
∑

j = 0
n even

ajµ
j

n = 0 :

P0 = a0

n = 2 :

a2 = a0
j(j + 1) − n(n + 1)

(j + 1)(j + 2)

= a0
0 · 1 − 2 · 3

1 · 2
= −3a0

P2 = a0(1 − 3µ2)

n = 4 :

a2 = a0
j(j + 1) − n(n + 1)

(j + 1)(j + 2)

= a0
0 · 1 − 4 · 5

1 · 2
= −10a0

a4 = a2
j(j + 1) − n(n + 1)

(j + 1)(j + 2)

= a2
2 · 3 − 4 · 5

3 · 4
= −14

12
a2 = +

140

12
a0 =

35

3
a0

P4 = a0

(

1 − 10µ2 +
35

3
µ4

)

and so on. The value of a0 may be arbitrarily defined for each different polynomial, but the

final norm used to define the Legendre Polynomials is that Pn(1) = 1 for all n, so

P0 = 1 (29a)

P2 =
1

2
(3µ2 − 1) (29b)

P4 =
1

8
(35µ4 − 30µ2 + 3) (29c)

and a set of odd Legendre polynomials can be defined using the same procedure.

P1 = µ (30a)

P3 =
1

2
(5µ3 − 3µ) (30b)

P5 =
1

8
(63µ5 − 70µ3 + 15µ) (30c)

5



Geog 657 Climate Dynamics Spring 2007

Some Properties of the Legendre Polynomials.

1) Orthogonal
∫ +1

−1

Pn(µ)Pm(µ) dµ =
2

2n + 1
δnm (31)

where δnm is the Kronecker delta

δnm ≡
{

1 n = m
0 n 6= m

(32)

2) Recursive

(n + 1)Pn+1(µ) = (2n + 1)µ Pn(µ) − n Pn(µ) (33)

(This is implemented for generating values of high-order Legendre Polynomials in For-

tran subroutines available in the cld directory.)

3) Range |Pn(µ)| ≤ 1 ∀n, µ ∈ [−1, +1]

4) Values at zero. Two properties true of all sets of odd and even functions (compare

sine and cosine, or odd and even powers of x, for example).

Pn(0) = 0 n odd (34)

dPn

dµ

)

0

= 0 n even (35)

5) Normalization convention. Pn(1) = 1 ∀n. By the definitions of odd and even

functions, this leads to Pn(−1) = 1 for even polynomials and Pn(−1) = −1 for odd

polynomials.

6) Integrals on range for even polynomials.

∫ 1

0

Pn(µ) dµ = 0 ∀n > 0 (even) (36)

by symmetry then also,

∫ 0

−1

Pn(µ) dµ = 0 ∀n > 0 (even)

(Note that
∫ +1

−1
Pn(µ) dµ = 0 ∀n > 0, even or odd, where the even result follows from

summing the previous two, and any odd functions whatsoever integrate to zero over

any range symmetric about zero.)

7) Roots. Legendre Polynomial Pn(µ) has n real roots in the range [−1, +1]. For even

polynomials, the roots form a set that is symmetric about 0, and for odd polynomials,

the roots include 0 plus a set that is symmetric about 0.

Fourier Legendre Series.

Any function of latitude, f(ϕ), if sufficiently well-behaved that the integrals below exist, can

be replaced by a Fourier-Legendre series, in the same manner that any periodic function on

a cartesian space can be replaced with a Fourier trigonometric series. The proof is totally
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analogous to the Fourier sine or cosine series, and requires that we work in µ = sin ϕ in the

range [−1, +1]. Assert the existence of a set of coefficients fn such that

f(µ) =

∞
∑

n=0

fnPn(µ) (37)

then do the reverse proof

∫ +1

−1

f(µ)Pn(µ) dµ =

∫ +1

−1

(

∞
∑

m=0

fmPm(µ)

)

Pn(µ) dµ

=

∞
∑

m=0

fm

∫ +1

−1

Pm(µ)Pn(µ) dµ

=

∞
∑

m=0

fm
2

2n + 1
δnm

= fn
2

2n + 1
(38)

so

fn =
2n + 1

2

∫ +1

−1

f(µ)Pn(µ) dµ (39)

A useful note about the first coefficient, for which P0 = 1:

a0 =
1

2

∫ +1

−1

f(µ) dµ = f̄ (40)

Associated Legendre Functions and Spherical Harmonics.

Returning to the Associated Legendre Differential Equation, before the assumption of m =

0,
1

P

d

dµ
(1 − µ2)

dP

dµ
− m2

1 − µ2
= −n(n + 1) (17)

solutions can be obtained for series that require truncation via both m (which has already

been required to be an integer) and n. The actual derivation of the eigenfunctions is well

beyond our interest, but what we obtain is a set of Associated Legendre Functions Pm
n (µ)

in which n is still a nonnegative integer and m is an integer in the range [−n, +n]. The

generating equation for these is

Pm
n (µ) =

(−1)m

2nn!
(1 − µ2)m/2 d(m)

dµ(m)
Pn(µ) (41)

leading to just a few examples

P 0
n =

1

2nn!
Pn(µ) (42a)

P 0
1 =

1

2
µ =

1

2
sin phi (43b)

P 1
1 = −1

2
(1 − µ2)1/2 = −1

2
cosϕ (44c)

in which the beginning of one trend is barely noticeable: the oddness or evenness of an

Associated Legendre function is based on the value of n − |m|, and that value is also the
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number of roots in the range (−1, +1). An additional characteristic is that the Associated

Legendre functions that are even in n − |m| are 0 at ±1.

We combine Associated Legendre functions with the longitudinal terms to get a set of

Spherical Harmonics.

Y m
n (µ, λ) = ξm

n Pm
n (µ)eimλ (45)

where ξm
n is a new normalization factor

ξm
n =

√

2n + 1

4π

(n − m)!

(n + m)!
(46)

The spherical harmonics are orthogonal in two dimensions

∫ 2π

0

dλ

∫ +1

−1

dµY m
n

∗Y l
k = δmlδnk (47)

where Y m
n

∗ is the complex conjugate of Y m
n . These spherical harmonics each have a pattern

of longitude-line roots or latitude-line roots, in which Y 0
n will be zonal harmonics consisting

of factors of the Legendre polynomials, Y n
n will be sectoral harmonics that consist of factors

of wave patterns around the globe, and any others are called tesseral harmonics.

Any map field A(ϕ, λ) = A(µ, λ) that is mathemtically well-behaved can be represented

as Fourier spherical harmonic series

A(µ, λ) =

∞
∑

n=0

+n
∑

m=−n

Am
n Y m

n (µ, λ) (48)

where the Am
n coefficients can be found by integration, using the orthogonality of the spher-

ical harmonics,

Am
n =

∫ 2π

0

dλ

∫ +1

−1

dµA(µ, λ)Y m
n

∗(µ, λ) (49)

Truncation. In practice, no Fourier series is ever summed to infinity. The usual form for

a truncation is

A(µ, λ)
.
=

M
∑

m=−M

J(m)
∑

n=|m|

Am
n Y m

n (µ, λ) (50)

where M is the truncation zonal wavenumber (i.e., the 15 in “R15” or the 42 in “T42.”),

J(m) is the truncation function applied to the meridional wavenumber parameter. The two

most common forms of J are

J(m) =
{

M Triangular truncation
M + m Rhomboidal truncation
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Shallow Water Equations
Momentum equations in two dimensions

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂h

∂x
= 0 (51)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu + g

∂h

∂y
= 0 (52)

and in vector form
∂V

∂t
= −(V · ∇)V + fk× V + ∇Φ = 0 (53)

reminder:

k × V = k × (ui + vj) = uj− vi

Take an apparently backwards step by bringing in vorticity

ζ =
∂v

∂x
− ∂u

∂y
(54)

and kinetic energy per unit mass

1

2
V · V =

u2 + v2

2
(55)

∇
(

1

2
V ·V

)

= i

(

u
∂u

∂x
+ v

∂v

∂x

)

+ j

(

u
∂u

∂y
+ v

∂v

∂y

)

Add and subtract v(∂u/∂y) in first (i) term and u(∂v/∂x) in second term. Rearrange terms.

∇
(

1

2
V ·V

)

= i

(

u
∂u

∂x
+ v

∂v

∂x
+ v

∂u

∂y
− v

∂u

∂y

)

+ j

(

u
∂u

∂y
+ v

∂v

∂y
+ u

∂v

∂x
− u

∂v

∂x

)

= i

[(

u
∂u

∂x
+ v

∂u

∂y

)

+ v

(

∂v

∂x
− ∂u

∂y

)]

+ j

[(

u
∂v

∂x
+ v

∂v

∂y

)

+ u

(

∂u

∂y
+

∂v

∂x

)]

= i[(V · ∇)u − vζ] + j[(V · ∇)v − uζ]

= (V · ∇)V + ζk × V

Plug this result back into the vector momentum equation (53):

∂V

∂t
+ (f + ζ)k × V + ∇

(

Φ +
1

2
V · V

)

= 0 (56)

Mass continuity
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (57)

Integrate (57) over the depth of the layer, assume horizontal velocities do not vary with

height.

0 =

∫ h

0

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

dz

= h

(

∂u

∂x
+

∂v

∂y

)

+ w(h) − w(0)
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Use w(0) = 0 and w(h) = dh/dt, expand the total derivative for h into the local and

advected components:

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ h

(

∂u

∂x
+

∂v

∂y

)

= 0 (58)

Further simplify this by assuming that h is subject to small variations around a larger mean

state, such that if

h = h̄ + h′

where h̄ is a constant mean height and h′ is the perturbation around that mean, then (58)

can be rewritten as
∂h′

∂t
+ u

∂h′

∂x
+ v

∂h′

∂y
+ h̄

(

∂u

∂x
+

∂v

∂y

)

= 0

in which the derivatives get h′ since the constant term has no derivative, and the integrated

term gets h̄ since h̄ ≫ h′. Extend Φ in the same way

Φ = Φ̄ + Φ′; Φ′ = gh′; Φ̄ = gh̄

Then mass continuity becomes

∂Φ′

∂t
= −(V · ∇)Φ′ − Φ̄∇ ·V

= −(V · ∇)Φ′ − Φ̄D (59)

where D = ∇ · V is the horizontal divergence.

Helmholtz’s Theorem lets us break any “reasonable” (i.e., continuous and suffi-

ciently differentiable) vector field into an irrotational component (a vector field for which

the vorticity vanishes) and a nondivergent component (a vector field for which the diver-

gence vanishes). This allows us to create two scalar fields, a stream function Ψ and a

scalar potential χ, such that

V = k ×∇Ψ + ∇χ (60)

where ∇χ is the irrotational component (because ∇ × ∇χ = 0 for any scalar field) and

k ×∇Ψ is nondivergent, because

∇ · (k ×∇Ψ) =

(

i
∂

∂x
+ j

∂

∂y

)

·
(

i
∂Ψ

∂y
− j

∂Ψ

∂x

)

=
∂2Ψ

∂x∂y
− ∂2Ψ

∂y∂x

= 0

The interchange in the order of differentiation is always possible for well-behaved physical

fields. Then:

ζ = k · ∇ × V

= k · [∇× (k ×∇Ψ) + ∇×∇χ]

(expand) (vanishes)

= k · [k(∇ · ∇Ψ) −∇Ψ(∇ · k) − (∇Ψ · ∇)k − (k · ∇)∇Ψ]

(vertical derivatives and derivatives of k vanish)
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= k · [k∇ · ∇Ψ]

= ∇2Ψ (61)

D = ∇ · V
= ∇ · (k ×∇Ψ) + ∇ · ∇χ

= ∇Ψ · (∇× k) − k(∇×∇Ψ) + ∇2χ

= ∇2χ (62)

The Divergence Equation. Create the divergence equation by taking the divergence

of the vector form of the momentum equation (6). The second step requires the vector

identity

∇ · (A × B) = B · (∇× A) − A · (∇× B)

∇ · ∂V

∂t
= −∇ · [(f + ζ)k × V] −∇2

(

Φ′ +
1

2
V · V

)

∂D

∂t
= −k · [∇× (f + ζ)V] − (f + ζ)V(∇× k) −∇2

(

Φ′ +
1

2
V · V

)

= −k · [∇× (f + ζ)V] −∇2

(

Φ′ +
1

2
V · V

)

(63)

The Vorticity Equation is created by taking the vertical component of the curl of

the momentum equation (6). [k · ∇ × (momentum equation)].

k · ∇ × ∂V

∂t
= −k · ∇ × [k × (f + ζ)V] + k · ∇ × ∇

(

Φ′ +
1

2
V ·V

)

(vanishes)

∂

∂t
(k · ∇ × V) = −k · {k[∇ · (f + ζ)V] − [(f + ζ)V]∇ · k

+ [(f + ζ)V · ∇]k − (k · ∇)[(f + ζ)V]

∂ζ

∂t
= −∇ · [(f + ζ)V] (64)

Spherical coordinate modifications. Define a pair of modified velocity components

U ≡ ucosϕ; V ≡ vcos ϕ (65)

then

V = i
U

cosϕ
+ j

V

cosϕ
(66)

We will also occasionally need forms of gradient, divergence, and curl in meteorological

spherical coordinates. Note that these differ from math textbooks slightly because we use

ϕ as latitude while the standard mathematical spherical coordinate system uses colatitude,

which starts with 0 at the North Pole.

∇Φ =
i

acosϕ

∂Φ

∂λ
+

j

a

∂Φ

∂ϕ

∇ · V =
1

acosϕ

[

∂u

∂λ
+

∂

∂ϕ
(vcos ϕ)

]

k · (∇× V) =
1

acosϕ

[

∂v

∂λ
− ∂

∂ϕ
(ucosϕ)

]
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Use these to construct spherical-coordinate forms of the vorticity and divergence equa-

tions.

∂

∂t
∇2Ψ = −∇ · [(∇2Ψ + f)V]

= −∇ · (fV) −∇ · (V∇2Ψ)

= −∇f · Vf∇ · V −∇ · (V∇2Ψ) (67)

∇f =
i

acosϕ

∂f

∂λ
+

j

a

∂f

∂ϕ
=

j

a
2Ωcosϕ

∇f ·V =
V

cosϕ

2Ωcosϕ

a
=

2ΩV

a
(68a)

f∇ ·V = f∇2χ = 2Ω sinϕ∇2χ (68b)

∇ · (V ∇2Ψ) = ∇ ·
(

i
U∇2Ψ

cosϕ
+ j

V ∇2Ψ

cosϕ

)

=
1

a cos2 ϕ

∂

∂λ
(U∇2Ψ) +

1

acosϕ

∂

∂ϕ

(

cosϕ
V ∇2Ψ

cosϕ

)

=
1

a cos2 ϕ

[

∂(U∇2Ψ)

∂λ
+ cosϕ

∂(V ∇2Ψ)

∂ϕ

]

(68c)

Put (68)s back into (67):

∂(∇2Ψ)

∂t
= − 1

a cos2 ϕ

[

∂(U∇2Ψ)

∂λ
+ cosϕ

∂(V ∇2Ψ)

∂ϕ

]

− 2Ω

(

V

a
+ (∇2χ) sin ϕ

)

(69)

Now do the same treatment for the divergence equation.

∂∇2χ

∂t
= −k · [∇× (f + ζ)V] −∇2

(

Φ′ +
1

2
V ·V

)

(70)

Last term is easiest, deal with it first.

∇2

(

Φ′ +
1

2
V · V

)

= ∇2

(

Φ′ +
U2 + V 2

2 cos2 ϕ

)

(71a)

In the first term on the right side of (70), deal with f separately from ζ. Easiest first again,

so for f :

k · ∇ × (fV) = k · (∇f × V + f∇× V)

= k · (∇f × V) + f∇2Ψ

= k ·
[(

j
2Ωcosϕ

a

)

×
(

i
U

cosϕ
+ j

V

cosϕ

)]

+ f∇2Ψ

= −2ΩU

a
+ f∇2Ψ (71b)

Now deal with ζ

k · ∇ × (ζV) = k · ∇ ×
(

i
U∇2Ψ

cosϕ
+ j

V∇2Ψ

cosϕ

)

=
1

acosϕ

[

∂

∂λ

(

U∇2Ψ

cosϕ

)

− ∂

∂ϕ

(

cosϕ
V ∇2Ψ

cosϕ

)]

=
1

a cos2 ϕ

(

∂(U∇2Ψ)

∂λ
− cosϕ

∂(V ∇2Ψ)

∂ϕ

)

(71c)

12
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Put (71)s back into (70).

∂(∇2χ)

∂t
=

−1

a cos2 ϕ

(

∂(U∇2Ψ)

∂λ
− cosϕ

∂(V ∇2Ψ)

∂ϕ

)

+
2ΩU

a
+ f∇2Ψ −∇2

(

Φ′ +
U2 + V 2

2 cos2 ϕ

)

(72)

Similar treatment for the continuity equation.

∂Φ′

∂t
= −∇ · (Φ′V) − Φ̄D

= −
[

1

acosϕ

∂

∂λ

(

Φ′U

cosϕ

)

+
1

acosϕ

∂

∂ϕ

(

cosϕ
Φ′V

cosϕ

)]

− Φ̄∇2χ

=
−1

a cos2 ϕ

(

∂(Φ′U)

∂λ
+ cosϕ

∂(Φ′V )

∂ϕ

)

− Φ̄∇2χ (73)

Now have three main prognostic equations, (69), (72), and (73), which are prognostic

for ∇2Ψ, ∇2χ, and Φ′, respectively. To close the system, we need diagnostic relations for

U and V in terms of the prognostic variables.

U = ucosϕ

= i · (k ×∇Ψ + ∇χ)cosϕ

=

(

1

a

∂Ψ

∂ϕ
+

1

acosϕ

∂χ

∂λ

)

cosϕ

=
−cosϕ

a

∂Ψ

∂ϕ
+

1

a

∂χ

∂λ
(74a)

V = vcosϕ

= j · (k ×∇Ψ + ∇χ)cos ϕ

=

(

1

acosϕ

∂Ψ

∂λ
+

1

acosϕ

∂χ

∂ϕ

)

cosϕ

=
1

a

∂Ψ

∂λ
+

cosϕ

a

∂χ

∂ϕ
(74b)

13
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Spherical Harmonic Transform Method

Spherical Harmonic truncated Fourier series. Set up spherical harmonic Fourier

series representations for each of the major fields.

Ψ = a2
∞
∑

n=0

n
∑

m=−n

Ψm
n Y m

n

.
= a2

M
∑

m=−M

J(m)
∑

n=|m|

Ψm
n Y m

n (75)

where M is the truncation zonal wavenumber, J(m) is the truncation function applied

to the meridional wavenumber parameter and the Ψm
n are the spherical harmonic Fourier

coefficients of the field Ψ. The Fourier coefficients are fit via the double integral

Ψm
n =

∫ +1

−1

dµ

∫ 2π

0

dλΨ(µ, λ)Y ∗m
n (µ, λ) (76)

where Y ∗m
n (µ, λ)) is the complex conjugate of Y m

n ,

Y ∗m
n (µ, λ) = ξm

n Pm
n (µ)e−imλ = ξm

n Pm
n (µ)[cos imλ − i sin imλ]

(recall that cos−a = cos a because cosine is an even function.) (76) works because the

the spherical harmonics are orthogonal—orthogonality in complex eigenfunctions always

involves the complex conjugate, viz

∫ +1

−1

dµ

∫ 2π

0

dλ Y m
n (µ, λ)Y ∗j

k(µ, λ) = δnkδmj (77)

Define sets of Fourier coefficients for each of the major fields, using (76) to define the

coefficients. (We have deferred discussion of how to obtain these integrals efficiently for a

numerically specified field on the globe.)

χ
.
= a2

M
∑

m=−M

J(m)
∑

n=|m|

χm
n Y m

n (78)

Φ′ .
= a2

M
∑

m=−M

J(m)
∑

n=|m|

Φm
n Y m

n (79)

U
.
= a

M
∑

m=−M

J(m)
∑

n=|m|

Um
n Y m

n (80)

V
.
= a

M
∑

m=−M

J(m)
∑

n=|m|

V m
n Y m

n (81)

Derivatives of Spherical Harmonics. The following formulae can be used for getting

derivatives of fields from their Fourier coefficients.

(µ2 − 1)
∂Y m

n

∂µ
= n

√

(n + 1)2 − m2

4(n + 1)2 − 1
Y m

n+1 − (n + 1)

√

(n − 1)2 − m2

4(n − 1)2 − 1
Y m

n−1

14
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Simplifying definition:

ǫm
n ≡

√

n2 − m2

4n2 − 1

allows

(µ2 − 1)
∂Y m

n

∂µ
= nǫm

n+1Y
m
n+1 − (n + 1)ǫm

n−1Y
m
n−1 (82)

The other derivative is easier:

∂Y m
n

∂λ
= ξm

n Pm
n (µ)

∂

∂λ
eimλ

= ξm
n Pm

n (µ)imeimλ

= imY m
n (83)

The most useful aspect of the spherical harmonics is that they are eigenfunctions of the

Poisson equation for a sphere. They each satisfy the following equation

∇2Y m
n +

n(n + 1)

a2
Y m

n = 0 (84)

Removing the spatial derivatives. Our three prognostic equations are the vorticity,

divergence, and continuity equations, and we have two equations for the U and V compo-

nents of velocity as well. Our purpose is to plug truncated spherical harmonic series into

these equations in various places, and then use formulas for the derivatives of spherical

harmonics to get rid of all spatial derivatives. By the time we are done, we want every

term of these equations to be multiplying the same spherical harmonic (i.e., the same n

and m) so that we can make some use of orthogonality to simplify things. The process is

straightforward at first, but has several twists and turns.

Along the way, we need some Fourier coefficients that are transformed on longitude

only using sines and cosines, not on the whole sphere. Hence, Am, Bm, Cm, Dm, and Em

defined here are all functions of latitude (µ).

U∇2Ψ = a

M
∑

m=−M

Ameimλ V ∇2Ψ = a

M
∑

m=−M

Bmeimλ (85)

UΦ′ = a3
M
∑

m=−M

Cmeimλ V Φ′ = a3
M
∑

m=−M

Dmeimλ (86)

U2 + V 2

2
∇2Ψ = a2

M
∑

m=−M

Emeimλ (87)

and these coefficients are calculated from an inverse Fourier transform, as in

Am(µ) =
1

2π

∫ 2π

0

dλ U∇2Ψe−imλ (88)

Proceeding with expansions for velocity components:

U =
−cosϕ

a

∂Ψ

∂ϕ
+

1

a

∂χ

∂λ
(24a)

=
(1 − µ2)

1
2

a

∂Ψ

∂µ

dµ

dϕ
+

1

a

∂χ

∂λ

15
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[

Note:
dµ

dϕ
=

d(sin ϕ)

dϕ
= cosϕ =

√

1 − µ2

]

=
1 − µ2

a

∂Ψ

∂µ

dµ

dϕ
+

1

a

∂χ

∂λ

= a(1 − µ2)

M
∑

m=−M

J(m)
∑

n=|m|

Ψm
n

∂Y m
n

∂µ
+ a

M
∑

m=−M

J(m)
∑

n=|m|

χm
n

∂Y m
n

∂λ

= a(1 − µ2)
M
∑

m=−M

J(m)
∑

n=|m|

Ψm
n

(

1

µ2 − 1
[nǫm

n+1Y
m
n+1 − (n + 1)ǫm

n Y m
n−1]

)

+ a

M
∑

m=−M

J(m)
∑

n=|m|

χm
n imY m

n

= a
M
∑

m=−M

J(m)
∑

n=|m|

Y m
n [(n − 1)ǫm

n Ψm
n−1 − (n + 2)ǫm

n+1Ψ
m
n+1 + imχm

n ]

Since the quantity in square brackets corresponds to the position of Um
n in the truncated

Fourier representation of U , we have

Um
n = (n − 1)ǫm

n Ψm
n−1 − (n + 2)ǫm

n+1Ψ
m
n+1 + imχm

n (89)

Similarly for V

V =
1

a

∂Ψ

∂λ
+

cosϕ

a

∂χ

∂ϕ
(24b)

=
1

a

∂Ψ

∂λ
+

1 − µ2

a

∂χ

∂µ

= a

M
∑

m=−M

J(m)
∑

n=|m|

Ψm
n imY m

n

+ a(1 − µ2)
M
∑

m=−M

J(m)
∑

n=|m|

χm
n

(

1

µ2 − 1
[nǫm

n+1Y
m
n+1 − (n + 1)ǫm

n Y m
n−1]

)

= a

M
∑

m=−M

J(m)
∑

n=|m|

Y m
n [imΨm

n − nǫm
n+1χ

m
n+1 + (n + 1)ǫm

n χm
n−1]

and hence

V m
n = imΨm

n − nǫm
n+1χ

m
n+1 + (n + 1)ǫm

n χm
n−1 (90)

We now move on to the vorticity equation, and things start to get messy.

∂(∇2Ψ)

∂t
= − 1

a cos2 ϕ

[

∂(U∇2Ψ)

∂λ
+ cosϕ

∂(V ∇2Ψ)

∂ϕ

]

− 2Ω

(

V

a
+ (∇2χ) sin ϕ

)

(19)

=
−1

a(1 − µ2)

[

∂(U∇2Ψ)

∂λ
+ (1 − µ2)

∂(V ∇2Ψ)

∂µ

]

− 2Ω

(

V

a
+ µ∇2χ

)

(91)

16
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Take (91) apart one piece at a time. Start with the left side.

∂(∇2Ψ)

∂t
=

∂

∂t
∇2

(

a2
M
∑

m=−M

J(m)
∑

n=|m|

Ψm
n Y m

n

)

= a2 ∂

∂t

M
∑

m=−M

J(m)
∑

n=|m|

Ψm
n ∇2Y m

n

= − ∂

∂t

M
∑

m=−M

J(m)
∑

n=|m|

Ψm
n n(n + 1)Y m

n

= −
M
∑

m=−M

J(m)
∑

n=|m|

n(n + 1)Y m
n

∂Ψm
n

∂t
(92)

Now the big term on the right side of (91). Define Z as that term, and create a

temporary spherical harmonic Fourier coefficient Zm
n to represent it, i.e.,

Z(µ, λ) ≡ − 1

a cos2 ϕ

(

∂(U∇2Ψ)

∂λ
+ (1 − µ2)

∂(V ∇2Ψ)

∂µ

)

(93)a

= a

M
∑

m=−M

J(m)
∑

n=|m|

Zm
n Y m

n (93)b

then Zm
n must be calculated via the usual integrals. There are derivative-order interchanges

and an integration by parts between the 2nd and 3rd equations:

Zm
n =

∫ +1

−1

dµ

∫ 2π

0

dλ Z(µ, λ)Y ∗m
n (µ, λ)

=

∫ +1

−1

dµ

∫ 2π

0

dλ

{

1

a(1 − µ2)

(

∂(U∇2Ψ)

∂λ
+ cosϕ

∂(V ∇2Ψ)

∂ϕ

)

ξm
n Pm

n e−imλ

}

=
ξm
n

a

∫ +1

−1

dµ

{

Pm
n (µ)

(1 − µ2)

(

∫ 2π

0

dλ e−imλ ∂

∂λ

M
∑

j=−M

Aj(µ)eijλ

)

+

∫ 2π

0

dλ e−imλ ∂

∂µ
(U∇2ΨPm

n ) −
∫ 2π

0

dλ e−imλ(V ∇2Ψ)
dPm

n

dµ

}

(94)

We can get rid of the 2nd double integral of (94) using Leibniz’s theorem for moving a

derivative outside an integral:

∫ b

a

∂f(x, t)

∂x
dt =

d

dx

∫ b

a

f(x, t)dt

from which we make the double-integral extension

∫ q

p

dx

∫ b

a

∂f(x, t)

∂x
dt =

∫ q

p

dx
d

dx

∫ b

a

f(x, t)dt

=

∫ q

p

d

(

∫ b

a

f(x, t)dt

)

=

∫ b

a

f(q, t)dt −
∫ b

a

f(p, t)dt

17
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Taking the entire second double integral of (94) out,

∫ +1

−1

dµ

∫ 2π

0

dλ e−imλ ∂

∂µ
(U∇2ΨPm

n ) =

∫ +1

−1

dµ
d

dµ

(
∫ 2π

0

dλ e−imλU∇2ΨPm
n

)

=

∫ µ=1

µ=−1

d
(

Pm
n (µ)Bm(µ)

)

= Pm
n (1)Bm(1) − Pm

n (−1)Bm(−1)

= 0

because Bm are the coefficients for V , which must vanish at the poles.

Resuming (94) with the second integral removed, we will need to know that eimλ has

the following orthogonality property:

∫ 2π

0

dλ e−imλeijλ = 2πδjm =

{

2π j = m
0 j 6= m

then

Zm
n =

ξm
n

a

∫ +1

−1

dµ

{

Pm
n (µ)

(1 − µ2)

(

∫ 2π

0

dλ e−imλ ∂

∂λ

M
∑

j=−M

Aj(µ)eijλ

)

−
∫ 2π

0

dλ e−imλ(V ∇2Ψ)
dPm

n

dµ

}

=
ξm
n

a

∫ +1

−1

dµ

{

Pm
n (µ)

(1 − µ2)
2πijAjδjm − 2πBm

dPm
n

dµ

}

=
2πξm

n

a

∫ +1

−1

dµ

(

imAmPm
n (µ)

(1 − µ2)
− 2πBm

dPm
n

dµ

)

(95)

The remaining terms of (91) are simpler.

−2Ω
V

a
= −2Ω

M
∑

m=−M

J(m)
∑

n=|m|

V m
n Y m

n (96)

−2Ωµ∇2χ = 2Ω
M
∑

m=−M

J(m)
∑

n=|m|

Y m
n [n(n − 1)ǫm

n χm
n−1 + (n + 1)(n + 2)ǫm

n+1χ
m
n+1]

(97)

where (97) results from (84) and some manipulation of the Laplacian term.

Now reconstruct (91) with the intermediate results of (92), (95), (96), and (97).

∂(∇2Ψ)

∂t
=

−1

a(1 − µ2)

[

∂(U∇2Ψ)

∂λ
+ (1 − µ2)

∂(V ∇2Ψ)

∂µ

]

− 2Ω

(

V

a
+ µ∇2χ

)

(91)

− a

M
∑

m=−M

J(m)
∑

n=|m|

n(n + 1)Y m
n

∂Ψm
n

∂t

= a
M
∑

m=−M

J(m)
∑

n=|m|

Y m
n

[

2πξm
n

a

∫ +1

−1

dµ

(

imAmPm
n (µ)

(1 − µ2)
− 2πBm

dPm
n

dµ

)]

(98)

+ 2Ω

M
∑

m=−M

J(m)
∑

n=|m|

Y m
n [n(n − 1)ǫm

n χm
n−1 + (n + 1)(n + 2)ǫm

n+1χ
m
n+1 − V m

n ]

18
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A result of the orthogonality of the Y m
n is that they are linearly independent, meaning that

if
M
∑

m=−M

J(m)
∑

n=|m|

αm
n Y m

n =

M
∑

m=−M

J(m)
∑

n=|m|

βm
n Y m

n

then

αm
n = βm

n , ∀m, n

This allows us to drop the summations and the spherical harmonics from (98) and equate

the Fourier coefficients.

−n(n + 1)
∂Ψm

n

∂t
=

[

2πξm
n

a

∫ +1

−1

dµ

(

imAmPm
n (µ)

(1 − µ2)
− 2πBm

dPm
n

dµ

)]

(99)

+ 2Ω[n(n − 1)ǫm
n χm

n−1 + (n + 1)(n + 2)ǫm
n+1χ

m
n+1 − V m

n ]

The divergence equation (22) and the continuity equation (23) can be transformed

similarly to how we have treated the vorticity equation in the long, tedious process from

(91) to (99). Here are the resulting equations, notationally translated from Washington &

Parkinson without proof:

−n(n + 1)
∂χm

n

∂t
=

2πξm
n

a

∫ +1

−1

dµ

(

imBmPm
n

1 − µ2
+ Am

dPm
n

dµ

)

− 2Ω[n(n − 1)ǫm
n Ψm

n−1 + (n + 1)(n + 2)ǫm
n+1Ψ

m
n+1 + Um

n ]

+ n(n + 1)

(

Φm
n +

∫ +1

−1

dµ
EmPm

n

1 − µ2

)

(100)

∂Φm
n

∂t
= −

∫ +1

−1

dµ

(

imCmPm
n

1 − µ2
− Dm

dPm
n

dµ

)

+ Φ̄n(n + 1)χm
n (101)

Equations (99), (100), and (101) were the target of this whole writeup. Let us review

what we have accomplished.

1. We began with the shallow water equations: three nonlinear partial differential equa-

tions, with three independent variables u, v, and h, in a domain of latitude, longitude,

and time. Use of the shallow water equations is typical of heuristic formulations like

this—it was complicated enough for these simple forms. Extension to the full primitive

equations is discussed in Bourke et al. (1977), and the full resulting spectral equations

can be found in Kiehl etal. (1996).

2. We end with equations whose only partial derivatives are in time, so we have prognostic

equations that can be solved by temporal finite differencing. The prognostic variables

are now a large set of spherical harmonic Fourier coefficients.

3. Along the way, we transformed the independent variable set from u, v, and h into Ψ,

χ, and Φ. What we lost in intuitive intelligibility was regained by the simplicity of

calculating the Laplacian of a spherical harmonic.

4. Along the way, we deferred consideration of a lot of integrals. In order for this model

to be remotely usable, there must be very effective and efficient ways of numerically

integrating
∫ +1

−1

dµ f(µ) and

∫ 2π

0

dλ g(λ)

Discussion of the Fast Fourier Transform and Gauss-Legendre Quadrature must now

follow.
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Fast Fourier Transform and Gauss-Legendre Integration

Fitting the generalized Fourier coefficients for spherical harmonics to the various spatial

fields requires that the model repeatedly evaluate the integrals needed, specifically

Am
n =

∫ 2π

0

dλ

∫ +1

−1

dµA(µ, λ)Y m
n

∗(µ, λ) (102)

Each of the integrals requires a special technique—Gauss-Legendre integration for the lat-

itudinal (dµ) integral, and the Fast Fourier Transform (FFT) for the longitudinal (dλ)

integral. Inclusion of those in this writeup is a goal for future runs of the course.
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